Antioxidant Activity of the Lignins Derived from Fluidized-Bed Fast Pyrolysis.

نویسندگان

  • Sohail S Qazi
  • Dongbing Li
  • Cedric Briens
  • Franco Berruti
  • Mamdouh M Abou-Zaid
چکیده

A challenge in recent years has been the rational use of forest and agriculture residues for the production of bio-fuel, biochemical, and other bioproducts. In this study, potentially useful compounds from pyrolytic lignins were identified by HPLC-MS/MS and untargeted metabolomics. The metabolites identified were 2-(4-allyl-2-methoxyphenoxy)-1-(4-hydroxy-3-methoxyphenyl)-1-propanol, benzyl benzoate, fisetinidol, phenyllactic acid, 2-phenylpropionic acid, 6,3'-dimethoxyflavone, and vanillin. The 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity (DPPH), trolox equivalent antioxidant capacity (TEAC), and total phenolics content (TPC) per gram of pyrolytic lignin ranged from 14 to 503 mg ascorbic acid equivalents, 35 to 277 mg trolox equivalents, and 0.42 to 50 mg gallic acid equivalents, respectively. A very significant correlation was observed between the DPPH and TPC (r = 0.8663, p ≤ 0.0001), TEAC and TPC (r = 0.8044, p ≤ 0.0001), and DPPH and TEAC (r = 0.8851, p ≤ 0.0001). The polyphenolic compounds in the pyrolytic lignins which are responsible for radical scavenging activity and antioxidant properties can be readily profiled with HPLC-MS/MS combined with untargeted metabolomics. The results also suggest that DPPH, TEAC, and TPC assays are suitable methods for the measurement of antioxidant activity in a variety of pyrolytic lignins. These data show that the pyrolytic lignins can be considered as promising sources of natural antioxidants and value-added chemicals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Steam reforming of propane over Ni-K/CeO2-Al2O3 catalyst in fluidized- and fixed-bed reactors under low steam to propane ratio

Fluidized bed was employed to investigate propane steam reforming over Ni-K/CeO2-Al2O3 catalyst. The catalyst was characterized by XRD, SEM, TG/DTA, and N2 adsorption-desorption tests. Effects of promoters, space velocity, temperature, and steam/propane (S/C) ratio on propane conversion, H2 yield, H2/CO ratio, and stability were studied and discussed. The experiments were carried out under cond...

متن کامل

Effect of Segregation on the Reaction Rate of Sewage Sludge Pyrolysis in a Bubbling Fluidized Bed

The evolution of the pyrolysis of sewage sludge in a fixed and a fluidized bed was analyzed using a novel measuring technique. This original measuring technique consists of installing the whole reactor over a precision scale, capable of measuring the mass of the complete reactor with enough precision to detect the mass released by the sewage sludge sample during its pyrolysis. The inert conditi...

متن کامل

Fast Pyrolysis of Lignins

Three lignins: Indulin AT, Lignoboost, and Acetocell lignin, were characterized and pyrolyzed in a continuous-fed fast pyrolysis process. The physical and chemical properties of the lignins included chemical composition, heat content, ash, and water content. The distributed activation energy model (DAEM) was used to describe the pyrolysis of each lignin. Activation energy distributions of each ...

متن کامل

Two Phase Modeling of Char Combustion in a Circulating Fluidized Bed Reactor Using ASPEN PLUS

In this paper, combustion of char in the riser of circulating fluidized bed was modeled using ASPEN PLUS. Since physical and chemical phenomena are involved in the process, the model integrates the two-phase hydrodynamic sub-model with the reaction sub-model derived from the literature. In the proposed model, the fluidized bed is divided into several sections and the behavior of each section wa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 22 3  شماره 

صفحات  -

تاریخ انتشار 2017